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The pairing of two axisymmetric co-rotating vortex rings is considered as a model
problem for the interaction of the large scale structures in round jets. By using direct
numerical simulations of the incompressible Navier-Stokes equations, the sound radiation
of the interaction has been analyzed, with consideration of the effects of the Reynolds
number and initial thickness of the rings. The acoustic signature of the interaction has
revealed only minor effects of the Reynolds number. But the signature shows large effects
of the vorticity distribution, with the eventual appearance of a secondary frequency.
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1. INTRODUCTION

The aeroacoustics of round jets is an important technical and environmental problem
in particular in aeronautics, where the noise generated by aeroengines has a large relevance.
Although there is some controversy about the main cause of noise, Bridges and Hussain
[1] have shown that in turbulent jets the noise generated by the dynamics of coherent
structures cannot be dominant, while most of the sound radiation is due to the break-up
of the jet at the end of the potential core. In contrast, for moderate Reynolds number flows,
the main cause of the noise is related to the dynamics of the large vorticity structures
arising from the instability of the shear layer immediately outside the nozzle. Experimental
visualizations by Yule [2] at low Reynolds number allowed the identification of these
structures as vortex rings and he noted that their interaction determined the characteristics
of the jet. In particular one of the most relevant acoustic events is the pairing between
co-rotating vortex rings and is the main cause of noise.

Powell [3] has shown that, in low Mach number flows and in the absence of solid bodies,
the sound source is confined to rotational regions. Möhring [4], introducing a vector Green
function, obtained an improved expression for the acoustics, with only vorticity and
position vectors being involved. Besides if one is interested only in the far field acoustic
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pressure, it can be computed from an incompressible calculation by simply taking the third
time derivative of the centroid of vorticity as defined by Helmholtz [5]. This result, together
with the decoupling of the acoustic pressure from the fluid-dynamic problem [6], provides
an important simplification in the acoustic analysis.

In the study presented here, the dynamics of two isolated co-rotating vortex rings have
been analyzed with particular attention to the sound generated by their interaction. The
aim of this calculation is to isolate the most relevant aeroacoustic phenomenon, on the
assumption that the pressure signal is not disturbed by the complex jet dynamics. This
simplification might appear too crude, since in a real jet there is an array of vortex rings
and not just two. However flow visualizations have shown that these rings always interact
in pairs, and therefore the present assumption is appropriate. Besides, due to the easier
flow configuration, it is possible to perform a parametric study to understand which factors
most influence the noise.

The sound radiated by the mutual threading of two identical co-rotating vortex rings
has been previously studied by Kambe and Minota [7] using the hypotheses of inviscid
fluid and ‘‘thin’’ rings: i.e., with the core to ring radius ratio o/R�1. In particular they
studied the effect of the initial axial spacing between the rings on the sound radiated. In
contrast, in this paper finite core rings in a viscous fluid have been considered with a
particular look at the effects of the Reynolds number, the initial vorticity distribution and
the core size of the rings. Results have shown that the sound generation is mostly
determined by the vorticity distribution inside the ring cores, being more intense for thin
cores and sharp vorticity profiles.

Finally, in order to ensure the lack of dependence of the results on the particular
computational scheme, and to validate the numerical codes, some of the flows have been
simulated by two different procedures. In the first, the equations were solved in the
vorticity-streamfunction variables, allowing a direct computation of the acoustic source
terms. In the second, primitive variables (velocities and pressure) were used and
a preliminary calculation of the vorticity field was necessary. The comparison proved
the results to be indistinguishable and this allowed us to perform the analysis
without specifying if the results were obtained by the former or the latter numerical
approach.

2. ACOUSTIC SOURCE TERMS

Lighthill [6], starting from the Navier-Stokes equations for compressible flows, derived
the inhomogeneous wave equation for the density perturbation 7,

127/1t2 + c2
09

27= 12Tij /1xi1xj , Tij = 7uiuj +( p− c2
07)dij − eij , (1)

where c0 is the speed of sound in the undisturbed flow, ui is the ith velocity component,
p is the pressure and eij is the viscous stress tensor.

For unbounded flows at high Reynolds (Re) and low Mach (Ma=U/c0) numbers,
the solution of equation (1) can be decoupled from the fluid dynamic problem. With
L and U characteristic velocity and length scales of the flow, the acoustic wavelength
is l=O(c0L/U)=O(L/Ma): i.e., it is much larger than the fluid dynamic length
scale L. Since the acoustic perturbation is O(Ma2), inside the rotational region it is
possible to neglect both acoustic pressure and its variation. In contrast, far from the
former region the induced velocity decays as 1/=x =3 and the term 7uiuj becomes second
order with respect to the acoustic perturbation. Besides for high Reynolds number
flows and with the hypothesis of isentropic flows one has (p− p0)2 c2

0 (7− 70);
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then, far from the rotational region (far field), the source term in equation (1) can be
neglected.

Based on these considerations, Kambe [8] analyzed the acoustic pressure induced in the
far field by the vorticity dynamics and found the following relation between the vorticity
v and acoustic pressure:

p*(x, t)=
1

12p

70

c2
0

1
=x= 0xixj

=x=2 Q	 ij (tx )+ (5−3g)K� (tx )1. (2)

Here g is the ratio between the specific heats and Qij and K are defined by

Qij (t)=gR3

yi [y×v(y, t)]j dv(y), K(t)= 1
2 gR3

=u(y, t) =2 dv(y). (3)

tx = t− =x=/c0 is the retarded emission time, x being the distance between the observer and
the acoustic source, and the dots over the variables Qij and K indicate time differentiation.

For axisymmetric flows without swirl the above expressions simplify and the acoustics
pressure in a meridional plane A becomes

p*(x, t)=
1
4

70

c2
0

1
=x= $(cos2 f− 1

3)Q	 (tx )+
5−3g

3
K� (tx )%,

f being the angle between the vector x and the axis of symmetry. Due to the symmetry,
the terms in equations (3) assume the forms

Q(t)=gA

vs2x ds dx, K(t)=gA

cv ds dx, (4)

where s and x are radial and axial co-ordinates respectively and c is the Stokes
streamfunction. Because of the characteristics of their directivities the acoustic source
terms Q	 and K� are defined as quadrupole and monopole.

In the following some alternative expressions will also be used for the time-derivatives
of K and Q [8]:

K� =−2n gA

sv2 ds dx,

K� =−4n gA

v2v dx ds+4n2 gA $01v

1x1
2

+01v

1s1
2

+
v2

s2%s dx ds,

Q� =gA

(us2 +2vsx)v ds dx. (5)

It will be seen in the next section that the computation of these derivatives, both directly
from equations (5) or by numerical differentiation of equations (4), allows the accuracy
of the acoustic results to be checked.

3. NUMERICAL SET-UP

3.1.  

Both numerical methods solve the incompressible Navier-Stokes equations by
finite-difference scheme; second-order accurate in space and in time. The first in
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vorticity and stream function variables is designed for axisymmetric, swirl-free flows, the
equations are:

1v

1t
+

1

1s 0vs1 1c

1x
−

1

1x 0vs1 1c

1s
=

1
Re $ 1

1s 01s 1sv

1s 1+
12v

1x2%, (6)

s(1/1s)(1/s)1c/1s+ 12c/1x2 =−sv, (7)

u=(1/s)1/1s, v= −(1/s)1c/1x, (8)

being the axial and radial velocity components, respectively, c the Stokes’ streamfunction
and v the azimuthal vorticity component. The solution procedure is essentially the same
as that of Orlandi and Verzicco [9], the only relevant difference being the solution of the
elliptic equation (7) for which the iterative scheme developed by Matrone and Bucchignani
[10] is used. At the boundaries of the computational domain the vorticity was set
equal to zero while an asymptotic expression for the streamfunction was used to mimic
the unbounded space. A fourth order expansion for c= g(sv, with g(x)=1/(4p =x=),
gives

c(x, s)2 s2

4=x=3 gA 61+3
x

=x=2 x'−
3
2
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=x=21x'3 +01−
7
4

s2

=x=21s'2x'%7s'2v(x', s') ds' dx'.

The second method solves the Navier-Stokes equations in primitive variables. Although
this code is capable of solving three-dimensional flows, in this study it has been used in
the axisymmetric case. The equations, given by Shariff et al. [11] and not reported here
for sake of brevity, have been solved by a standard fractional-step method and have been
advanced in time by a third order Runge—Kutta scheme. The elliptic equation, necessary
to satisfy the incompressibility condition, has been reduced to the inversion of a tridagonal
matrix by the introduction of trigonometric expansion in the axial direction. In cylindrical
co-ordinates at s=0 the equations for the velocity components are singular, and therefore
in the radial direction the equation is solved for the quantity qs = sv. The advantage of
staggering the velocities is that at the centerline qs is identically zero, and the equation is
discretized without any approximation.

Along the axial direction periodicity was assumed, as is usually done in free-shear layers,
while a free-slip condition was imposed at the external radial boundary. That the latter
boundary was located at a satisfactory distance from the axis, was checked by preliminary
simulations.

In both cases the equations have been non-dimensionalized by the circulation of the ring
G and the toroidal radius of the ring R giving a Reynolds number Re=G/n with n the
kinematic viscosity. The equations have been solved in a region of axial and radial lengths
respectively of 10R and 4R.

For the numerical calculation of the integrals (4) and (5), standard second-order
and generalized fourth-order Simpson rules [12] have been used, giving practically the
same results. Also, for the calculation of the numerical time derivatives of K and Q
second and fourth order accurate expressions have been employed, again giving the same
results.
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3.2.  

Most of the simulations have been performed with the initial condition assumption of
two identical vortex rings initially at a distance equal to their toroidal radius R and with
Gaussian vorticity distribution within the core,

v(x, s)= (G/po2) e−(s/o)2, with s2 0 (x−X0)2 + (s−R)2, (9)

where X0 =2R/2 for the first and second rings, respectively. o is the radius of the core,
and s is the radius of the polar co-ordinates centred at the core (see Figure 1). From
equation (9) it is possible to derive the expression for the velocity tangential to the core,

u8 =(G/2ps)[1−e−(s/o)2] (10)

that will be found to be useful later.
In order to investigate about the role of the core vorticity distribution on the sound

generated, a second set of simulations has been performed with a further initial condition
of having a ‘‘top-hat’’ vorticity in the core,

1 sE 0·8o

v(x, s)=Csg
G

G

F

f
1− f(h) 0·8oQ sQ 1·2oh

G

G

J

j
, (11)

0 1·2oE s

where f(h)= exp[−e2(log 2/2)(1/h) exp(1/(h−1))] and h=(s−0·8o)/(0·4o). The function
f is introduced to smooth the vorticity discontinuity between the core of the ring and the
external irrotational region. The constant C is fixed by the requirement of a vortex ring
with unit circulation.

As mentioned above, the initial spacing between the rings has been assumed, for all the
simulations, to be equal to the ring radius R. Indeed, in a parametric study of the vortex
ring pairing, the effect of the initial axial distance, could also be considered. However, by
increasing the initial spacing of the rings the passage interaction is delayed without evident
changes in the dynamics. On the other hand, for every large initial distances, due to viscous
effects, interaction occurs when the vortices are very weak and the problem becomes
irrelevant for the jet. Actually, upon considering that the fundamental frequency of
shear-layers is Stu = fu/U=0·012–0·013 (with U the centerline jet velocity, u the
momentum thickness of the shear-layer and f the frequency), it turns out that the round
jet generating the present initial flow configuration should have R/u2 40, which is a
realistic value for jets. Indeed, the instability organizing the vorticity into rings is a second

Figure 1. Sketch of the initial conditions.
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Figure 2. Time evolution of the acoustic terms for the interaction of two co-rotating vortex rings with Gaussian
initial vorticity distribution (o/R=0·3) and Re=2500. (a) Monopole term; ——, second derivative of K; - - - -,
first derivative of K� ; · · · ·, K� . (b) Quadrupole term; ——, third time derivative of Q; - - - -, second derivative of Q� .

instability called the preferred mode [1], whose frequency scales with the jet diameter
D2 2R and its value is StD 2 0·5. Although this value yields an axial spacing of the vortex
ring of about D2 2R this instability is quite broadband and many flow visualizations (see,
for example, the paper by Suprayan and Fiedler [13]) have shown vortex ring at an axial
distance of R which is the value presently used.

3.3.  

The spatial resolution of the simulations was fixed such that the acoustic terms could
be accurately computed and were independent of the mesh size. Successive grid refinements
revealed that a grid spacing D2R/50 in the radial and axial directions was enough for
the present purposes at Re=2500.

In particular for the quadrupole term the second numerical derivative of Q� given in the
last of equations (5) with the third numerical derivative of Q has been computed, while
for the monopole term the second derivative of K has been compared with the first
derivative of K� and K� directly computed from the second of equations (5).

Preliminary tests have shown that the monopole term is the most sensitive to the spatial
resolution and coarse grids are immediately evidenced by large discrepancies between the
computed K� . In Figure 2 is shown the comparison for an adequately resolved case.

A few words should be said about the non-dimensionalization of the acoustic source
terms. Kambe and Minota [7] presented their results normalized with the quantity GU3

0 ,
where U0 =G/4pR. In the present case, however, all rings have unit circulation and unit
toroidal radius, and therefore such scaling would result in a division of all results by a
constant factor. Another possibility is the choice made by Shariff et al. [14] who
normalized the results with the same quantity but with U0 being the speed of translation
of the steady vortex ring in isolation, U0 =G/4pR[ln (8R/o)−1/4]. This latter choice
introduces a dependence of the scaling factor on the core thickness of the ring. Actually,
since thin core rings move faster, thus producing higher levels of noise, this scaling might
eliminate the dependence of the acoustic source terms on the core size. This
non-dimensionalization has been tested on the present results; however, the physical
behaviour of the quadrupole and monopole terms was observed to be the same as their
dimensional counterparts, and thus it is preferable to present the results without any
scaling.

4. RESULTS

Before getting into the discussion of the acoustics, it is useful to describe the
vorticity dynamics that characterizes the sound radiation through equation (4). In
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Figure 3(a) is shown the initial configuration, that consists of two identical vortex rings
with Gaussian vorticity distribution, with the ratio core-to-ring radius o/R=0·3. Both
rings, due to the self-induced translation velocity move in the same direction (from right
to left in Figure 3) and of course if they were isolated they would have an identical
translation velocity. In this flow configuration however, the rear one is compressed toward
the axis of symmetry, and the increasing curvature increase also its translation velocity.
This leads to rear ring to overtake the first ring, passing through the inner region. On the
other hand while the rear ring is passing through, the other ring is pushed radially outward
so that its toroidal radius increases and the velocity decreases, and this further helps the
overtaking phenomenon. It might happen that when the first passage is completed there
is a second interaction that eventually could restore the initial configuration, and the
process can continue. This is a classical model of rings interaction called ‘‘leapfrogging’’;
that, however, requires an ‘‘elastic’’ interaction between the rings with no permanent
deformations of the cores. Shariff et al. [15], by contour-dynamics calculations, have
shown that this scenario is unlikely even if viscosity is cancelled out. In particular the rings,
during the interaction, tear each other and pair (but not merge) forming a large structure
with sparse filaments. They also showed that the classical picture holds only for extremely
thin cores that cannot be found in real jets. In the present case the first interaction is
accompanied by strong core deformations, the rear ring wraps around the first and the
viscosity merges the two structures into only one ring, with only a weak tail left behind
(see Figure 3(f)). This is the kind of interaction commonly observed in jets where large
vortical structures tear each other and finally pair.

It is worth noting that the pairing of axisymmetric vortex rings is quite different from
that in two dimensions. In the latter case in fact, the vortices come closer, co-rotate and
pair by maintaining a perfect symmetry. In contrast, during the pairing of vortex rings one
is strained below the other and, due to vortex-stretching, vorticity levels change
considerably inside the rings. Shariff et al. [14] pointed out that the asymmetry of the
interaction is due to the unequal strain rate histories experienced by the vortices. This last
argument partially explains the experimental observation of Hussain [16] who noted that,
differently from plane mixing-layers, in round jets the evolution of large-scale structures
primarily occurs through asymmetric and fractional pairings.

The acoustic signals generated by the interaction of the two rings is shown in Figure 4
and, to relate better vorticity dynamics and acoustics, solid symbols in Figure 4(a) indicate
the times of the frames of Figure 3. Both contributions behave as a damped oscillation,

Figure 3. Contour plots of azimuthal vorticity for the interaction of two co-rotating rings with Gaussian
vorticity distribution (o/R=0·3) at Re=2500. (a) t=0; (b) t=2; (c) t=4; (d) t=6; (e) t=10; (f) t=14. The
line - - - indicates the axis of symmetry, Dv=0·3. Rings move from right to left.
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Figure 4. Time evolution of the acoustic source terms for the case of Figure 2. (a) Quadrupole, (b) monopole
term. ——, Vorticity stream function formulation; – – –, primitive variables. Symbols W indicate the times of
the frames of Figure 2.

with a characteristic frequency which is that of the passage of one ring inside the other,
and a damping that depends on how fast the rings merge. It will be shown in what follows
that the latter factor is influenced by the Reynolds number and by the vorticity distribution
inside the core of the vortex; in the present case for te 10 the pairing of the rings is
completed, the vorticity is adjusted in one large structure and the acoustic pressure quickly
vanishes. It can also be noted that the quadrupole term is about one order of magnitude
larger than the monopole and since in equation (2) Q	 is the only term having a spatial
dependence, the acoustic radiation has a marked quadrupolar character.

As a consistency check for the numerics, the same flow has been simulated by the code
in vorticity-streamfunction and by that in primitive variables. The result is shown in
Figure 4 and the comparison looks very satisfactory.

The influence of viscous effects on the acoustic emission has been investigated by
performing the previous simulation for a higher and lower value of the Reynolds number.
The vorticity dynamics presents only minor differences, and therefore the fields are not
reported, while the acoustic terms are shown in Figure 5. The quadrupole is essentially
unchanged due to the fact that the ‘‘leapfrogging’’ of one ring inside the other is an inviscid
phenomenon; however it is evidently the effect of viscosity that smooths vorticity gradients
and slightly slackens the dynamics. Both these effects diminish the magnitude of the
quadrupole. In contrast, the monopole results are largely affected by the viscosity, and in
particular this grows as the Reynolds number decreases. This is easily understood since
the amplitude of the monopole term depends on how fast the kinetic energy is dissipated
and obviously the lower the Reynolds number the faster the energy decreases. In all cases,

Figure 5. Time evolution of the acoustic terms for the interaction of two co-rotating rings with Gaussian
vorticity distribution (o/R=0·3): ——, Re=1000: · · · ·, Re=2500; - - -, Re=4000. (a) Quadrupole, (b)
monopole term.
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Figure 6. Contour plots of azimuthal vorticity for the interaction of two co-rotating rings with Gaussian
vorticity distribution (o/R=0·15) at Re=2500. (a) t=0; (b) t=2; (c) t=4; (d) t=6; (e) t=8; (f) t=10; (g)
t=12; (h) t=14; (i) t=16. The line — - — indicates the axis of symmetry, Dv=1. Rings move from right to left.

however, after the pairing is completed and only one structure is formed both terms drop
to zero and maintain this value for the rest of the evolution.

A major factor influencing the acoustic radiation is the thickness of the ring given by
the ratio of the core to toroidal radius o/R. In order to investigate this effect simulations
have been performed with the same parameters as the case of Figure 3 but using thinner
and thicker rings. The case with thicker rings (o/R=0·4) does not present any particular
feature; the vorticity dynamics is the same as in the previous case but, since the self-induced
translation velocity is smaller and ‘‘fat’’ rings interact in a slower manner, the acoustic
radiation is considerably lower (see Figure 7). On the contrary the dynamics becomes much
more active for the case of thinner rings (o/R=0·15), and some flow maps are shown in

Figure 7. Time evolution of the acoustic source terms for the interaction of two co-rotating rings with Gaussian
vorticity distribution at Re=2500: ——, o/R=0·15; - - -, o/R=0·30; · · · ·, o/R=0·40; (a) Quadrupole term, (b)
monopole term.
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Figure 6. A first effect is that, since the cores are small, the scenario of the interaction is
closer to the classical ‘‘leapfrogging’’ and after the first passage (t=6) the pairing is not
completed. In particular at t2 8 there is a second passage accompanied by large
deformations of the ring cores that are also evidenced by the peak in the quadrupole term
of Figure 7(a). A new feature that appears in both monopole and quadrupole terms is a
secondary frequency higher than that of the passage. This frequency is due to the nutation
of the ring cores and its related period is the eddy-turnover-time of the single rings. In
fact, defining the eddy-turnover-time as the time it takes a particle to revolve around the
core at a location s= d of maximum tangential velocity in the core (u8), one has from
equation (10) d=1·12141o and u8 (d)=0·1139G/d. Finally the eddy-turnover-time T is

T=2pd/u8 (d)=2pd2/0·1139G,

so that for o=0·15 and G=1 one has T=1·560. This is exactly the period of the first
oscillation in the quadrupole term and this frequency is also evident later, even if it is
partially hidden by the large amplitude of the low frequency component.

The amplitudes of the monopole, given in Figure 7(b), show that it increases as the rings
become thinner and this is consistent with the energetic meaning of the monopole as a rate
of dissipation. In fact when the core radius decreases the gradients become steeper and
steep gradients are always accompanied by a large dissipation (see equation (5)).

The fundamental importance played by vorticity gradients in the acoustic radiation is
confirmed also by the simulation performed with the rings given by equation (11) with a
‘‘top hat’’ initial vorticity distribution. In this case the vortex rings are as thick as in the
first case (o/R=0·30) but high vorticity gradients are introduced by the different vorticity
distribution. Results are reported in Figure 8, showing that again high vorticity gradients
increase the magnitude of both monopole and quadrupole terms, even if different from
the thin core case there is no evidence of the secondary frequency. This is due to the
nutation of the ring, which for the present core-thickness is much slower. In fact, assuming
as rough estimate of the eddy turnover-time the value for the corresponding Gaussian ring
with o/R=0·30, one obtains T2 6·3, yielding a secondary frequency lower than the
fundamental one. Since the magnitude of the quadrupole term is given by the third time
derivative of Q, it is clear that the slower the time scale of the phenomenon, the more the
amplitude will be reduced.

In order to separate the effect of viscosity from that of convection, a similar simulation
has been performed by a contour-dynamics approach [14]. This algorithm describes the
inviscid dynamics of a piecewise constant v/s region in a Lagrangian manner, following
its contour motion. In this context the vorticity distribution given by equation (11), with

Figure 8. Time evolution of the acoustic terms generated by the interaction of two vortex ring with o/R=0·3
and Re=2500: —— ‘‘top hat’’, – – – Gaussian vorticity distribution. (a) Quadrupole term, (b) monopole term.
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Figure 9. Time evolution of the quadrupole term generated by the interaction of two vortex ring with
o/R=0·3: —— ‘‘top hat’’ contour dynamics; – – – ‘‘top hat’’ with smoothing and Re=2500.

the smoothing function f(h) cancelled out, has been used as initial condition. The
comparison with the finite-difference solution shows (see Figure 9) that, at least during
the passage phase, sound radiation is mostly dominated by the convective terms, giving
an acoustic signature very similar to that of the viscous calculation. In particular the
frequency of oscillation remains essentially unchanged, while the peak values are slightly
smoothed, presumably due to viscous diffusion.

Incidentally, it must be stressed that the interaction between co-rotating vortex rings is
accompanied by some filamentation that, in absence of viscosity, generates extremely thin
structures which are very difficult to follow by contour-dynamics techniques. This is the
reason that the authors were forced to stop the calculation just after the completion of
the first passage.

From the above results one can conclude that the acoustic source terms always contain
one fundamental frequency related to the passage of one ring inside the other and a
secondary frequency due to the nutation of the vortex ring cores. The relative magnitude
of the two contributions is usually different and that at the fundamental frequency is the
most important contribution. Nevertheless, Shariff et al. [15] have shown that there are
some extreme cases with inviscid and extremely thin vortex rings where the two
contributions have comparable magnitudes and the sound is dominated by the secondary
frequency. These cases, however, have mostly a theoretical interest, since such extreme
conditions are never encountered in the real jets to which attention was devoted in this
study.

5. CONCLUSIONS

Numerical experiments of the interaction between two identical co-rotating vortex rings
have been presented with particular consideration of the sound radiation. Simulations
performed with different values of the Reynolds number revealed that when viscosity is
increased, the quadrupole term decreases while the monopole term increases. However,
since the former term has a much larger amplitude, the overall effect is a decrease of the
radiated power. On the other hand, when high vorticity gradients are introduced, either
by considering thin core rings or sharp initial vorticity distributions, both monopole and
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quadrupole terms increase and this latter factor is much more effective than the Reynolds
number.

Results have also shown that sound is radiated at two frequencies: a fundamental one,
due to the passage of one ring inside the other, and a secondary one with a period equal
to the eddy turnover-time of the ring. The former usually constitutes the largest
contribution to the sound, while the latter becomes appreciable only when very thin cores
are considered. However there might be extreme cases where the secondary frequency
becomes the most important [15], even if it happens when zero viscosity and unrealistically
thin rings are considered.
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